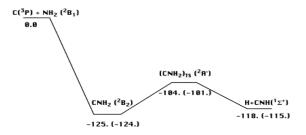
Authors:

Dahbia Talbi (Univ. of Montpellier - CNRS, Fr) Jean-Christophe Loison (Univ. of Bordeaux - CNRS, Fr)


$C(^{3}P) + NH_{2}(^{2}B_{1})$	$\rightarrow \text{HCN}(\mathbf{X} \ ^{1}\Sigma^{+}) + \text{H}(^{2}\text{S}) \ (1) \ \Delta \text{Hr}_{298} = -554 \text{ kJ/mol}$	refs (2) and (3)
	→ HNC(X ${}^{1}\Sigma^{+}$) + H(2 S) (2) Δ Hr ₂₉₈ = - 499 kJ/mol	refs (2) and (3)

Rate Coefficient Data $(k = k_1 + k_2)$					
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Comments		
<i>Rate Coefficient Measurements</i> No data was found					
Calculations $k = 2.3 \ 10^{-10}$ $k = 1.6 \ 10^{-10}$ $k = 6.8 \ 10^{-11}$	10 20 300	Herbst et al. (2000) Herbst et al. (2000) Herbst et al. (2000)			
Reviews and Evaluations k_1 (T) = 3.26 x 10 ⁻¹¹ (T/300) ^{-0.36} k_2 (T) = 3.26 x 10 ⁻¹¹ (T/300) ^{-0.36}	10-300 10-300	UMIST database UMIST database			
k_1 (T) = 3.26 x 10 ⁻¹¹ (T/300) ^{-0.36} k_2 (T) = 3.26 x 10 ⁻¹¹ (T/300) ^{-0.36}		OSU database OSU database			

17-1

Comments

To our knowledge no experimental studies have been undertaken to determine rate coefficients for these reactions. The only known reaction rates are from the dynamical calculations of Herbst et al (1). Using the potential energy surface calculated by D. Talbi & Y Ellinger (2) by means of accurate ab initio methods, Herbst et al. (1) have determined the rate coefficients given above. The dynamical study has also revealed that the products (HCN and HNC) are formed with so much excess of energy that efficient isomerization occurs leading to an equal production rate for HNC and HCN from both reactions.

The Energy profiles are for surfaces of doublet multiplicity. Relative energies, given in kcal/mol, have been calculated at the PMP4SDTQ/6-311++G(3df,3pd)//MP2/6-31G(d,p) and CCSD(T)/6-311++G(3df,3pd)//MP2/6-31G(d,p)

(numbers in brackets) levels. In all cases, relative energies are corrected for the ZPE and for spin contamination from higher spin state

Preferred Values

Rate coefficient (10 – 300 K) k_1 (T) = 3×10⁻¹¹(T/300)^{-0.2}e^{-6/T} cm³s⁻¹ k_2 (T) = 3×10⁻¹¹(T/300)^{-0.2}e^{-6/T} cm³s⁻¹

Reliability $F_0 = 1.5$; g = 0

Comments on Preferred Values

References

(1) E. Herbst, R. Terzieva and D. Talbi, MNRAS, 311, 869 (2000) (2) D. Talbi Chem. Phys. Letters, 313, 626 (1999) (3) D. L. Baulch et al., J. Phys. Chem. Ref. Data 34, 575 (2005).