$$H_{3}^{*} + O(^{3}P) \rightarrow OH^{*} + H_{2}$$
(1)
$$\rightarrow H_{2}O^{*} + H$$
(2)

Thermodynamic Data

 $\Delta H^{\circ}_{298}(1) = -57 \text{ kJ mol}^{-1}$

 $\Delta H^{\circ}_{298}(2) = -158 \text{ kJ mol}^{-1}$

Thermochemical data are taken from ref. 3

Rate Coefficient Data ($k = k_1 + k_2$)

k/cm^3 molecule ⁻¹ s ⁻¹	<i>T</i> / K	Reference	Comments
Rate Coefficient Measurements			
$(8 \pm 4) \times 10^{-10}$	300	Fehsenfeld, 1976 ¹	(a)
$(12 \pm 5) \times 10^{-10}$	295 ± 5	Milligan and McEwan, 2000 ²	(b)
Theoretical Evaluations			
$11.9 \times 10^{-10} (T/K)/300)^{-0.144}$	0 - 70	Bettens, Hansen and Collin ⁴	(c)
$9.4 \times 10^{-10} (T/K)/300)^{-0.320}$	70 - 500	Bettens, Hansen and Collins ⁴	(c)
$1.14 \times 10^{-9} (T/K)/300)^{-0.156} \exp(-1.41)$	/ <i>T</i>) 5 – 400	Klippenstein et al., 2010 ⁵	(d)
Reviews and Evaluations			
$(8 \pm 4) \times 10^{-10}$	all temperatures	UMIST database	
$(8 \pm 4) \times 10^{-10}$	all temperatures	OSU website	

Comments

(a) A very short paper with few experimental details. Flowing afterglow technique: production of H_3^+ described in ref. 3, no details of how of O-atom concentration were estimated. No measurements of branching ratio.

(b) Experiment employs a SIFT technique to generate and select H_3^+ ions. O atoms from microwave discharge of O_2/He . Reaction of $CH_3^+ + O$ (which it is claimed has a well-established rate coefficient) was used to calibrate the O-atom concentrations. Error takes into account uncertainties in estimating O-atom concentrations. Branching ratios are found to be $k_1/(k_1 + k_2) = 0.7$ and $k_2/(k_1 + k_2) = 0.3$.

(c) Results of a quasiclassical trajectory study on an *ab initio* potential energy surface,⁴ provides a temperature-dependence for *k*. The branching ratios were calculated to be $k_1/(k_1 + k_2) = 0.94$ and $k_2/(k_1 + k_2) = 0.06$, independent of collision energy.

(d) Kinetics predicted from a combination of transition state theory, trajectory calculations and master equation analysis employing potential energy surface from high level quantum chemical calculations.

Preferred Values

 $k(298 \text{ K}) = (1.2 \pm 0.3) \times 10^{-9} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $k(10 \text{ K}) = (1.7 \pm 0.4) \times 10^{-9} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $k(T) = 1.14 \times 10^{-9} (T/300)^{-0.156} exp(-1.41/T) cm³ molecule⁻¹ s⁻¹$

 $k_1/(k_1 + k_2) = (0.7 \pm 0.2)$ and $k_2/(k_1 + k_2) = (0.3 \pm 0.2)$, independent of temperature.

Reliability $\Delta \log k = \pm 0.15$; F₀ = 1.4; g = 0

Comments on Preferred Values

Both the OSU and UMIST databases accept Fehsenfeld's room temperature value from 1976,¹ and (apparently) assume (a) that reaction (1) to $OH^+ + H_2$ is dominant, and (b) that the rate coefficient is independent of temperature. Unfortunately, Fehsenfeld gives no details of how the O-atoms were generated and their concentration estimated. A follow-up paper that was supposed to give these details could not be found.

Milligan and McEwan² do give details. In effect, they measure the rate coefficient relative to that for CH_3O^+ + O. Their assessment of errors seems well founded, their value of k(298 K) and the branching ratio at 298 K (and the uncertainties in both quantities) are accepted.

Both Fehsenfeld¹ and Milligan and McEwan² only give room temperature values of the rate coefficient. The latter authors point out k(298 K) is close to the value expected from the Langevin model ($17 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$), on which basis one might expect no temperature-dependence.

Bettens *et al.*⁴ provide a thorough theoretical analysis of this reaction. Their findings include: (a) that the capture cross-section is greater than that given by the Langevin model due to the long-range ion-quadrupole forces between H_3^+ and O(³P); and (b) that only *ca*.

80% of the 'captured' trajectories lead to reaction. They assume that reaction occurs only on the lowest triplet surface correlating with reactants and reduce their calculated by a factor taking account of the spin-orbit states in $O({}^{3}P_{J})$. Together with (a) and (b), the value of k(298 K)obtained is close to that obtained by Milligan and McEwan² and to that estimated by a Langevin analysis.

The calculations of Klippenstein et al.⁵ are in fair agreement with thos of Bettens et al.⁴, both in respect of the absolute values of the rate coefficients and their *T*-dependence, and again with the limited experimental data. They do not provide information on the branching ratio. We adopt their recommended *T*-dependence (in recognition of their more sophisticated treatment of spin-orbit effects) and the branching ratio from ref. 2.

We adopt the value of k(298 K) and the expression for k(T) from Klippenstein e tla. In view of the good agreement between the two sets of calculations and their agreement with the experimental values of k(298 K), the uncertainties in the recommendations are quite small.

References

- ¹ F. C. Fehsenfeld, Astrophys. J. **209**, 638 (1976).
- ² D. B. Milligan and M. J. McEwan, Chem. Phys. Lett. **319**, 482 (2000).
- ³ F. C. Fehsenfeld, W.Lindinger and D. L. Albritton, J. Chem. Phys. **63**, 443 (1975).
- ⁴ R. P. A. Bettens, T. A. Hansen and M. A. Collins, J. Chem. Phys. **111**, 6322 (1999).
- ⁵ S. J. Klippenstein, Y. Georgievskii and B. J. McCall, J. Phys. Chem. A, **114**, 278 (2010).